
Computing Multiplicative Inverses in GF(P) 
By George E. Collins 

Abstract. Two familiar algorithms, the extended Euclidean algorithm and the 
Fermat algorithm (based on Fermat's theorem aP a(mod p)), are analyzed and 
compared as methods for computing multiplicative inverses in GF(p). Using Knuth's 
results on the average number of divisions in the Euclidean algorithm, it is shown 
that the average number of arithmetic operations required by the Fermat algorithm 
is nearly twice as large as the average number for the extended Euclidean algorithm. 
For each of the two algorithms, forward and backward versions are distinguished. 
It is shown that all numbers computed in the forward extended Euclidean algorithm 
are bounded by the larger of the two inputs, a property which was previously 
established by Kelisky for the backward version. U 

1. Introduction. The importance of congruence arithmetic (i.e., arithmetic in a 
Galois field GF(p) with a prime number, p, of elements) in calculations requiring 
extensive operations on large integers is receiving increasing recognition. Takahasi 
and Ishibashi in an early paper [5] discussed several applications and noted the 
resulting economies in computing time, memory requirements and programming 
effort. More recently, Borosh and Fraenkel in [1] have treated its use in the exact 
solution of systems of linear equations. The author is currently using it in developing 
faster methods for polynomial g.c.d. calculation than those considered in [2]. 

All arithmetic operations in GF(p) are simple and rapid with the exception of 
division or, equivalently, the calculation of the multiplicative inverse of a nonzero 
element b, 0 < b < p. It is well known that this calculation can be conveniently 
and efficiently performed either by using an algorithm based on Fermat's theorem 
or by using an extension of the Euclidean algorithm for the g.c.d. of two integers. 
Both methods are briefly considered in [5], for example. 

In the following we make a careful comparison of the two algorithms. For each 
algorithm we distinguish between a forward and a backward version. A theorem 
on the forward Euclidean algorithm, analogous to a theorem of Kelisky, [3], on the 
backward Euclidean algorithm is proved to the effect that all integers which arise 
in the calculation are nicely bounded. It is shown, using a conjecture of Knuth, 
[4], that the Euclidean algorithm is about twice as fast as the Fermat algorithm on 
the average. 

2. Euclidean Algorithm. In the Euclidean algorithm we are given integers a and b 
and we compute d = gcd(a, b) as follows. For convenience we may assume a > 
b > 0. Set a, = a, a2 = b. Given at and ai+1 with at > a+1 > 0 define qi and ai+2 

by the relations at = ai+1 qi + ai+2, 0 < ai+2 < ai+i. We thus compute a finite 
sequence a, > a2 > ... > a,+1 > a,+2 = 0 and we have d = a.+,. 

We will consider two ways of extending this algorithm in order to also obtain 
integers x and y such that ax + by = d. One of these ways is described by Knuth 

Received June 11, 1968. 

197 



198 GEORGE E. COLLINS 

in [4]. It amounts to the following. Set xi = 1, yl = 0, X2 = 0 and Y2 = 1. Given 
xi, +,, yi, Yi+i and qi (as' defined above), set Xi+2 = x- qixi+i and Yi+2 = Yi 

- qiyi+i. Then x = x7+, and y = Yn+1. Clearly axi + byi = a, holds for i = 1 and 
i = 2 and by a simple induction using the recurrence relations for the xi, yi and ai, 
it holds for all i, in particular for i = n + 1. 

The other method has been considered by Kelisky in [3]. It can be described as 
follows. Having computed the sequences {ai} and {qi} and having saved the qi, 
set ul = 0, U2 = 1. Given ui and ui+, set Ui+2 = u- qn-iui+i. Then x = un and 
y = un+,. Clearly d = uian-i+1 + ui+lan-i+2 holds for i = 1 and by a simple induc- 
tion using the recurrence relations for the ui and a,, it holds for all i, in particular 
for i = n. 

Knuth calls the former method the extended Euclidean algorithm. In order to 
distinguish the two we shall, for obvious reasons, call that method the forward ex- 
tended Euclidean algorithm and the one considered by Kelisky the backward 
extended Euclidean algorithm; for brevity in the following we shall just refer to 
the forward and backward methods. 

Clearly, the backward method has the disadvantage that all the qi must be saved 
temporarily, although Lame's theorem [6] gives us a tight bound, 5[logio a + 1], for 
the number of these quotients. The backward method would appear somewhat faster 
(by a ratio of about 3 to 2) since a single sequence {ut } replaces the two sequences 
Ixq } and {yi } . However, in the forward method we can dispense with the {xt } se- 
quence since x can be computed as (d - by)/a once d and y are known. Then the 
forward and baclkward methods become equal in computing time. Further, it is 
only y that is wanted when a is p and we are computing b-1 in GF(p). 

Kelisky showed in [3] that ui < a for all i. In fact, he showed that 
luil < 1an-i+2/d for all i. It follows that if a is a single-precision integer, so are 
all intermediate quantities in the backward algorithm. We will now establish a 
similar result for the forward algorithm. 

THEOREM. Xn+2 = (-I)n+lb/d and Yn+2 = (-1)na/d. 
Proof. Let Di be the determinant 

xi yi 
Xi+i Yi+i 

Then 

Xi+i Yi+i = Xi+i Yi+i 
Xi+2 Yi+2 xi - qixi+l yi- qiyi+l 

-Xi+i Yi+i -D . 
xi yi 

But D1 = 1, so Di = (1)i)+1 for all i. It follows that gcd(xi, yi) = 1 for all i, in 
particular gcd(xn+2, Yn+2) = 1. But axn+2 + byn+2 = an+2 = 0 and hence (a/d)xn+2 
= -(b/d)yn+2. Since gcd(a/d, b/d) = 1 also, Xn+2 = ?b/d. The appropriate signs 
are determined by the observation that the sequences {x } and {yi} alternate in 
sign. 

From the recurrence relations we easily establish, moreover, that 0 < X3 < 
-X4 < X5 < -X6 < ... and O < y2 < -Y3 < Y4 < -Y5 < * - - . Hence in the 
forward algorithm, also, all intermediate numbers are single-precision provided a is. 



COMPUTING MULTIPLICATIVE INVERSES IN GF(p) 199 

We have, in fact, Xn+2 = 
Xn- 

qnXn+ll nXn+1i 
= |Xn l+21 ? IXn+21 = bld, hence 

xn+lI < 'b/d since qn > 2. Similarly Iyn+ I < 'ald. 

3. Comparison with the Fermat Algorithm. By Fermat's theorem [6], bp e 1 
(mod p) if b is a nonzero element of GF(p) and hence b-1 = bp-2 in GF(p). bp2 can 
be conveniently and efficiently evaluated using the binary representation p-2 = 

Z=o ai2i. Here again there are two possible algorithms, which could be called 
forward and backward, respectively. 

In the forward algorithm we set rO = b, so = 1 and use the recurrence relations 
ri+1 = r,,2, 

si+1 = s, if a+l =O 
= siri , ifa+i = 1.i 

Then Sn+, = bp-2. Here the low-order bits of p - 2 are used first. 
In the backward algorithm, the high-order bits are used first, as follows. Set 

to = 1 and use 

t+1 = ti2, if an_ = 0 
= bti2, if ani = 1 

Then tn+i = br-A 
The amount of computation is the same for the two Fermat algorithms. In 

either algorithm one must perform approximately n + m multiplications, where m 
is the number of one bits in the binary representation of p - 2. If one may assume 
that on the average m = n/2, then the average number of multiplications for either 
Fermat algorithm is approximately 2 log2 p. Since these are multiplications in 
GF(p), there will be associated with each integer multiplication an integer division 
to reduce the result to the range 0 < x < p. 

If either of the Euclidean algorithms is used, then for each of the n divisions 
required we must also do one multiplication and one subtraction (the sequence 
{x } is not computed in the forward algorithm; we compute either yi+2 = y - 

qiyi+l or Ui+2 = u- qn-_ui+i). According to Knuth [4, p. 7], the average value of 
n is (12 (In 2)/wX2) ln p = .8427 In p = .584 log2 p, approximately. 

Hence, the Fermat algorithm requires an average of about 3 log2 p arithmetic 
operations whereas the Euclidean algorithm requires an average of about (7/4) X 
log2 p arithmetic operations. In the Fermat algorithm, half of the operations are 
multiplications and half are divisions. In the Euclidean algorithm, there are equal 
numbers of multiplications, divisions and subtractions. Since subtractions generally 
take less time than multiplications or divisions, and since the multipliers in the 
Euclidean algorithm are almost all very small integers, one would expect the 
Euclidean algorithm to be approximately twice as fast as the Fermat algorithm on 
most computers. 

As an empirical test of this analysis, both algorithms were programmed in 
assembly language for the CDC 1604 computer. The Fermat program contains a 
loop which is executed once for each bit of p - 2. When half of these bits are ones, 
the average loop execution time is about 206 microseconds. The Euclid program 
contains a loop which is executed once for each division and whose execution time 
is about 174 microseconds. 



200 GEORGE E. COLLINS 

It follows that on the 1604 the Euclidean algorithm should take about 
.584(174/206) = .49 of the time for the Fermat algorithm. A large number of trials 
using primes of the order 1013 were timed and the results agreed with this analysis 
within a relative error of about five per cent. The average time for an inversion 
using the Euclidean algorithm was about 4 milliseconds. 

It is worth noting that it is often possible to use only primes p such that p - 2 
contains only a few ones in its binary representation, in which case the Fermat 
algorithm is faster than otherwise. However, even in the ideal case the Euclidean 
algorithm time was found to be only about .68 of the Fermat algorithm time. The 
two programs are about equal in size and were equally easy to write. 

4. Acknowledgement. This study has been aided by the interest and program- 
ming assistance of both W. J. Fabens and Ellis Horowitz. Support was also pro- 
vided by the University of Wisconsin Computing Center. 

Computer Sciences Department 
University of Wisconsin 
Madison, Wisconsin 53706 

1. I. BOROSH & A. S. FRAENKEL, "Exact solutions of linear equations with rational co- 
efficients by congruence techniques," Math. Comp., v. 20, 1966, pp. 107-112. MR 32 #4831. 

2. G. E. COLLINS, "Subresultants and reduced polynomial remainder sequences," J. Assoc. 
Comput. Mach., v. 14, 1967, pp. 128-142. MR 35 #6352. 

3. R. P. KEDLISKY, "Concerning the Euclidean algorithm," Fibonacci Quart., v. 3, 1965, pp. 
219-223. MR 32 ff5579. 

4. D. E. KNUTH, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, Addison- 
Wesley, Reading, Mass., 1968. 

5. H. TAKAHASI & Y. ISHIBASHI, "A new method for 'exact calculation' by a digital com- 
puter," Information Processing in Japan, v. 1, 1961, pp. 28-42. 

6. J. V. USPENSHY & M. A. HEASLET, Elementary Number Theory, McGraw-Hill, New York, 
1939. MR 1, 38. 


